Photocatalytic H2-Evolution by Homogeneous Molybdenum Sulfide Clusters Supported by Dithiocarbamate Ligands

2019 
Irradiation at 460 nm of [Mo3(μ3-S)(μ2-S2)3(S2CNR2)3]I ([2a]I, R = Me; [2b]I, R = Et; [2c]I, R = iBu; [2d]I, R = CH2C6H5) in a mixed aqueous–polar organic medium with [Ru(bipy)3]2+ as photosensitizer and Et3N as electron donor leads to H2 evolution. Maximum activity (300 turnovers, 3 h) is found with R = iBu in 1:9 H2O:MeCN; diminished activity is attributed to deterioration of [Ru(bipy)3]2+. Monitoring of the photolysis mixture by mass spectrometry suggests transformation of [Mo3(μ3-S)(μ2-S2)3(S2CNR2)3]+ to [Mo3(μ3-S)(μ2-S)3(S2CNR2)3]+ via extrusion of sulfur on a time scale of minutes without accumulation of the intermediate [Mo3S6(S2CNR2)3]+ or [Mo3S5(S2CNR2)3]+ species. Deliberate preparation of [Mo3S4(S2CNEt2)3]+ ([3]+) and treatment with Et2NCS21– yields [Mo3S4(S2CNEt2)4] (4), where the fourth dithiocarbamate ligand bridges one edge of the Mo3 triangle. Photolysis of 4 leads to H2 evolution but at ∼25% the level observed for [Mo3S7(S2CNEt2)3]+. Early time monitoring of the photolyses shows that [Mo3...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    68
    References
    5
    Citations
    NaN
    KQI
    []