In vivo cardiac DTI on a widely available 3T clinical scanner: an optimized M2 approach

2016 
Background Currently, there are only two main methods to perform diffusion tensor CMR (DT-CMR) that either rely on the subject exhibiting stable, periodic RR cycle (stimulated echo [1]) or utilize specialized research scanners that have ultra-high gradient strengths (spin-echo [2]). Recent work has demonstrated that gradient moment nulling (GMN) of the second order is capable of yielding robust diffusion weighted images (DWI) [3]. To extend this work, we present a novel DT-CMR sequence prototype that utilizes a M2 GMN gradient scheme that is robust to imperfect B1 refocusing at high main fields (≥3T). We compare this with no GMN compensation (M0) and first order GMN compensation (M1). Patients with advanced heart failure (HF) were also scanned to test its ability in a clinical setting.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []