Measures of ventilation heterogeneity mapped with hyperpolarized helium-3 MRI demonstrate a T2-high phenotype in asthma.

2021 
BACKGROUND Hyperpolarized gas with helium (HHe-3) MR (magnetic resonance) is a noninvasive imaging method which maps and quantifies regions of ventilation heterogeneity (VH) in the lung. VH is an important feature of asthma, but little is known as to how VH informs patient phenotypes. PURPOSE To determine if VH indicators quantified by HHe-3 MR imaging (MRI) predict phenotypic characteristics and map to regions of inflammation in children with problematic wheeze or asthma. METHODS Sixty children with poorly-controlled wheeze or asthma underwent HHe-3 MRI, including 22 with bronchoalveolar lavage (BAL). The HHe-3 signal intensity defined four ventilation compartments. The non-ventilated and hypoventilated compartments divided by the total lung volume defined a VH index (VHI %). RESULTS Children with VHI % in the upper quartile had significantly greater airflow limitation, bronchodilator responsiveness, blood eosinophils, expired nitric oxide (FeNO), and BAL eosinophilic or neutrophilic granulocyte patterns compared to children with VHI % in the lower quartile. Lavage return from hypoventilated bronchial segments had greater eosinophil % than from ventilated segments. CONCLUSION In children with asthma, greater VHI % as measured by HHe-3 MRI identifies a severe phenotype with higher type 2 inflammatory markers, and maps to regions of lung eosinophilia. Listed on ClinicalTrials. gov (NCT02577497).
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    25
    References
    2
    Citations
    NaN
    KQI
    []