Two-dimensional sulfur- and chlorine-codoped g-C3N4/CdSe-amine heterostructures nanocomposite with effective interfacial charge transfer and mechanism insight

2021 
Abstract The poor utilization of visible light and the speedy recombination of photoexcited carriers limit the further development of carbon nitride polymer (CN) photocatalysts. It is a valid means for enhancing the photocatalytic ability to ameliorate the electronic and physicochemical properties via modifying the structure of CN. The sulfur- and chlorine-codoped graphite CN (S/Cl-CN) was successfully fabricated with low-cost ammonium chloride and thiourea as precursors. The introduction of Cl atoms will establish interlayer channels to promote interlayer charge migration and up-shifted conduction-band level. S atom is appropriate to be incorporated into the CN framework to replace N atom, which is beneficial to adjust the band gap. Then, inorganic-organic CdSe-diethylenetriamine (D) grown in situ are employed to fabricate a S/Cl-CN/CdSe-D heterojunction. S/Cl-CN/CdSe-D heterojunction exhibits greater hydrogen evolution activity compared to CN, S-CN, Cl-CN, S/Cl-CN, CdSe-D and CN/CdSe-D. Finally, Step-scheme (S-scheme) photocatalytic mechanism based on S/Cl-CN/CdSe-D heterostructure was proposed.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    51
    References
    85
    Citations
    NaN
    KQI
    []