A Matrix-Free Approach to Parallel and Memory-Efficient Deformable Image Registration

2018 
We present a novel computational approach to fast and memory-efficient deformable image registration. In the variational registration model, the computation of the objective function derivatives is the computationally most expensive operation, both in terms of runtime and memory requirements. In order to target this bottleneck, we analyze the matrix structure of gradient and Hessian computations for the case of the normalized gradient fields distance measure and curvature regularization. Based on this analysis, we derive equivalent matrix-free closed-form expressions for derivative computations, eliminating the need for storing intermediate results and the costs of sparse matrix arithmetic. This has further benefits: (1) matrix computations can be fully parallelized, (2) memory complexity for derivative computation is reduced from linear to constant, and (3) overall computation times are substantially reduced. In comparison with an optimized matrix-based reference implementation, the CPU implementation ac...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    30
    References
    4
    Citations
    NaN
    KQI
    []