Facile synthesis of flower-like α-Fe2O3/ZnFe2O4 architectures with self-assembled core-shell nanorods for superior TEA detection

2021 
Abstract Uniform flower-like α-Fe2O3 architectures with self-assembled core-shell nanorods are constructed and successfully prepared via the facile process. The concentration of Fe salt plays a great significance for morphological evolution from nanorods to self-assembled microflowers. Flower-like α-Fe2O3/ZnFe2O4 consisting of α-Fe2O3 core and ZnFe2O4 shell nanorods are derived from FeOOH/ZIF-8 precursors. The detailed studies reveal that the tunable growth of ZIF-8 nanoparticles on three-dimensional FeOOH microflowers at room temperature and the availble calcination regulation are responsible for the formation of core-shell Fe2O3/ZnFe2O4 composites. The highest response value of flower-like α-Fe2O3/ZnFe2O4 architectures to 100 ppm triethylamine (TEA) has been improved to 141 at 280 oC, which is calculated to be 6.2 times compared with flower-like α-Fe2O3 architectures (22.7). The enhanced gas-sensing mechanism of α-Fe2O3/ZnFe2O4 composites can be attributed to the typical microflowers structures, the large specific surface area, the effective heterojunctions between α-Fe2O3 core and ZnFe2O4 shell, and the improved electron transfer process.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    34
    References
    2
    Citations
    NaN
    KQI
    []