Density Independent Algorithms for Sparsifying $k$-Step Random Walks

2017 
We give faster algorithms for producing sparse approximations of the transition matrices of $k$-step random walks on undirected, weighted graphs. These transition matrices also form graphs, and arise as intermediate objects in a variety of graph algorithms. Our improvements are based on a better understanding of processes that sample such walks, as well as tighter bounds on key weights underlying these sampling processes. On a graph with $n$ vertices and $m$ edges, our algorithm produces a graph with about $n\log{n}$ edges that approximates the $k$-step random walk graph in about $m + n \log^4{n}$ time. In order to obtain this runtime bound, we also revisit "density independent" algorithms for sparsifying graphs whose runtime overhead is expressed only in terms of the number of vertices.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    11
    References
    0
    Citations
    NaN
    KQI
    []