Identifying Polarity in Tweets from an Imbalanced Dataset about Diseases and Vaccines Using a Meta-Model Based on Machine Learning Techniques

2020 
Sentiment analysis is one of the hottest topics in the area of natural language. It has attracted a huge interest from both the scientific and industrial perspective. Identifying the sentiment expressed in a piece of textual information is a challenging task that several commercial tools have tried to address. In our aim of capturing the sentiment expressed in a set of tweets retrieved for a study about vaccines and diseases during the period 2015–2018, we found that some of the main commercial tools did not allow an accurate identification of the sentiment expressed in a tweet. For this reason, we aimed to create a meta-model which used the results of the commercial tools to improve the results of the tools individually. As part of this research, we had to deal with the problem of unbalanced data. This paper presents the main results in creating a metal-model from three commercial tools to the correct identification of sentiment in tweets by using different machine-learning techniques and methods and dealing with the unbalanced data problem.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    62
    References
    4
    Citations
    NaN
    KQI
    []