Modeling the Diurnal Variability of Agricultural Ammonia in Bakersfield, California during CalNex

2016 
NH3 retrievals from the NASA Tropospheric Emission Spectrometer (TES), as well as surface and aircraft observations of NH3(g) and submicron NH4(p), are used to evaluate modelled concentrations of NH3(g) and NH4(p) from the Community Multiscale Air Quality (CMAQ) model in the San Joaquin Valley (SJV) during the California Research at the 20 Nexus of Air Quality and Climate Change (CalNex) campaign. We find that simulations of NH3 driven with the California Air Resources Board (CARB) CalNex emission inventory are qualitatively and spatially consistent with TES satellite observations, with a correlation coefficient (r) of 0.54. However, the surface observations at Bakersfield indicate a missing diurnal cycle in the model bias, with CMAQ overestimating surface NH3 at night and underestimating it during the day. The surface, satellite, and aircraft observations all suggest that the afternoon NH3 emissions in the CARB inventory are 25 underestimated by at least a factor of two, while the night-time overestimate of NH3(g) is likely due to a combination of overestimated NH3 emissions, underestimated deposition, and insufficient vertical mixing in the Weather Research and Forecasting model (WRF) meteorological fields used to drive CMAQ. We used the surface observations at Bakersfield to derive an empirical diurnal cycle of NH3 emissions in the SJV, in which night-time and midday emissions differed by about a factor of 4.5. Adding this diurnal profile to the CMAQ simulations 30 while keeping the daily total NH3 emissions constant at the CARB values significantly improved the model performance at night, but sizable errors (up to 15 ppbv) in night-time NH3 remain, likely due to remaining errors in vertical mixing at night. The model performance is slightly degraded during the afternoon when the diurnal cycle is adjusted, but this may reflect relatively small (~20 %) errors in the total NH3 emissions rather than remaining errors in the diurnal cycle. Running Atmos. Chem. Phys. Discuss., doi:10.5194/acp-2016-44, 2016 Manuscript under review for journal Atmos. Chem. Phys. Published: 9 March 2016 c © Author(s) 2016. CC-BY 3.0 License.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    38
    References
    4
    Citations
    NaN
    KQI
    []