Rotational fluctuations of water confined to layered oxide materials: nonmonotonous temperature dependence of relaxation times.

2007 
The rotational molecular dynamics of water confined to layered oxide materials with brucite structure was studied by dielectric spectroscopy in the frequency range from 10-2 to 107 Hz and in a broad temperature interval. The layered double hydroxide samples show one relaxation process, which was assigned to fluctuations of water molecules forming a layer, strongly adsorbed to the oxide surface. The temperature dependence of the relaxation rates has an unusual saddlelike shape characterized by a maximum. The model of Ryabov et al. (J. Phys. Chem. B 2001, 105, 1845) recently applied to describe the dynamics of water molecules in porous glasses is employed also for the layered materials. This model assumes two competing effects:  rotational fluctuations of water molecules that take place simultaneously with defect formation, allowing the creation of free volume necessary for reorientation. The activation energy of rotational fluctuations, the energy of defect formation, a pre-exponential factor, and the defe...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    48
    References
    26
    Citations
    NaN
    KQI
    []