Ion-production efficiency of a singly charged ion source developed toward a 11C irradiation facility for cancer therapy

2019 
The ion-production efficiency of a newly developed singly charged ion source (SCIS) has been investigated to discuss the possibility of it being used in an isotope separation on-line system that provides 11C ions for heavy-ion cancer therapy with simultaneous verification of the irradiation field using positron emission tomography. The SCIS uses a low-energy hollow electron beam to produce singly charged carbon ions efficiently. To deliver sufficient 11C ions to the treatment room from a limited amount of 11C molecules, which are produced from a boron compound target and proton-beam irradiation via the 11B(p,n)11C reaction, the SCIS must have high ion-production efficiency. To realize this high efficiency, the SCIS was designed using a three-dimensional particle-in-cell code in previous work. With the fabricated SCIS, we performed experiments to measure the efficiency of producing CO2+ ions from nonradioactive 12CO2 molecules and C+ ions from nonradioactive 12CH4 molecules. We found that the SCIS achieved efficiencies of eC+=4×10−3 (0.4%) for C+ production and eCO2+=0.107 (10.7%) for CO2+ production.The ion-production efficiency of a newly developed singly charged ion source (SCIS) has been investigated to discuss the possibility of it being used in an isotope separation on-line system that provides 11C ions for heavy-ion cancer therapy with simultaneous verification of the irradiation field using positron emission tomography. The SCIS uses a low-energy hollow electron beam to produce singly charged carbon ions efficiently. To deliver sufficient 11C ions to the treatment room from a limited amount of 11C molecules, which are produced from a boron compound target and proton-beam irradiation via the 11B(p,n)11C reaction, the SCIS must have high ion-production efficiency. To realize this high efficiency, the SCIS was designed using a three-dimensional particle-in-cell code in previous work. With the fabricated SCIS, we performed experiments to measure the efficiency of producing CO2+ ions from nonradioactive 12CO2 molecules and C+ ions from nonradioactive 12CH4 molecules. We found that the SCIS achieved...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    16
    References
    1
    Citations
    NaN
    KQI
    []