Recent developments in nucleic acid based techniques for use in rumen manipulation.

2009 
Nucleic acid-based techniques which can be used to characterise complex microbial communities without incubation are now being employed regularly in ruminant nutrition studies. Conventional culture-based methods for enumerating rumen microorganisms (bacteria, archaea, protozoa, and fungi) have been superseded and are now used mainly to obtain pure isolates of novel organisms and reference strains that are required for the development and validation of the nucleic acid approaches. These reference strains are also essential for physiological studies of the lifestyle of the organisms as well as sources of genomic DNA and RNA that can be analysed for functional gene activity. The foundation of the molecular ecology techniques is 16S/18S rDNA sequence analysis which has provided a phylogenetically based classification scheme for enumeration and identification of microbial community members. The use of this marker gene in assays involving the use of single nucleic acid probes or primer sets is rapidly evolving to high throughput approaches such as microarray analysis and new generation sequencing technologies. While these analyses are very informative for determining the composition of the microbial community and monitoring changes in population size, they can only infer function based on these observations. The focus of nucleic acid research is now shifting to the functional analysis of the ecosystem which involves the measurement of functional genes and their expression in the predominant or specific members of the rumen microbial community. Functional gene studies are less developed than 16S rDNA-based analysis of community structure. Also for gene expression studies there are inherent problems involved in extracting high quality RNA from digesta, and priming cDNA synthesis from bacterial mRNA. This paper reviews nucleic acid based molecular methods which have recently been developed for studying the structure and function of rumen microbial communities.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    56
    References
    9
    Citations
    NaN
    KQI
    []