High Performance Plasma Operation on DIII-D During Extended Periods Without Boronization

2007 
High performance plasmas, including both hybrid and advanced tokamak (AT) bench-mark discharges, were shown to be highly repeatable in DIII-D over 6000 plasma-seconds of operation during the 2006 campaign with no intervening boron depositions or high temperature bakes. Hybrid and AT discharges with identical control targets were repeated after the initial boronization at the beginning of the 2006 campaign, and again just before and after a second boronization near the end of the 2006 campaign. After a long entry vent between the 2006 and 2007 campaigns, similar discharges were again repeated after the standard high temperature baking and plasma cleanup, but prior to a boronization. Performance metrics, such as {beta}, confinement quality, and density control, were extremely well repeated. A low performance daily reference shot (DRS) was also established as a routine monitor of impurity influx. Over the 2006 campaign, the DRS database indicated little to no secular increase in impurity content. Oxygen content and Ni line emission were higher after the intervening vent, but were still minor contributors to plasma contamination. This indicates that erosion of boron films used for wall conditioning will not be a limitation to establishing long pulse high performance discharges in the new generation ofmore » superconducting tokamaks if graphite is used as the primary plasma facing material. These results contrast with recent work in devices using high-Z metallic plasma facing materials, where very frequent refreshing of boron films is required for high performance plasma operation.« less
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    1
    Citations
    NaN
    KQI
    []