Integration of pathway, cellular and genetic context reveals principles of synthetic lethality that affect reproducibility

2019 
Synthetic lethal screens have the potential to identify new vulnerabilities incurred by specific cancer mutations but have been hindered by lack of agreement between studies. Using KRAS as a model, we identified that published synthetic lethal screens significantly overlap at the pathway rather than gene level. Analysis of pathways encoded as protein networks identified synthetic lethal candidates that were more reproducible than those previously reported. Lack of overlap likely stems from biological rather than technical limitations as most synthetic lethal phenotypes were strongly modulated by changes in cellular conditions or genetic context, the latter determined using a pairwise genetic interaction map that identified numerous interactions that suppress synthetic lethal effects. Accounting for pathway, cellular and genetic context nominates a DNA repair dependency in KRAS-mutant cells, mediated by a network containing BRCA1. We provide evidence for why most reported synthetic lethals are not reproducible which is addressable using a multi-faceted testing framework.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    54
    References
    0
    Citations
    NaN
    KQI
    []