Boundary Representations of λ-Harmonic and Polyharmonic Functions on Trees

2018 
On a countable tree T, allowing vertices with infinite degree, we consider an arbitrary stochastic irreducible nearest neighbour transition operator P. We provide a boundary integral representation for general eigenfunctions of P with eigenvalue λ ∈ C. This is possible whenever λ is in the resolvent set of P as a self-adjoint operator on a suitable l2-space and the diagonal elements of the resolvent (“Green function”) do not vanish at λ. We show that when P is invariant under a transitive (not necessarily fixed-point-free) group action, the latter condition holds for all λ≠ 0 in the resolvent set. These results extend and complete previous results by Cartier, by Figa-Talamanca and Steger, and by Woess. For those eigenvalues, we also provide an integral representation of λ-polyharmonic functions of any order n, that is, functions \(f: T \to \mathbb {C}\) for which (λ ⋅ I − P)nf = 0. This is a far-reaching extension of work of Cohen et al., who provided such a representation for the simple random walk on a homogeneous tree and eigenvalue λ = 1. Finally, we explain the (much simpler) analogous results for “forward only” transition operators, sometimes also called martingales on trees.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    14
    References
    7
    Citations
    NaN
    KQI
    []