PCDD/F Formation in an iron/potassium-catalyzed diesel particle filter.
2013
Catalytic diesel particle filters (DPFs) have evolved to a powerful environmental technology. Several metal-based, fuel soluble catalysts, so-called fuel-borne catalysts (FBCs), were developed to catalyze soot combustion and support filter regeneration. Mainly iron- and cerium-based FBCs have been commercialized for passenger cars and heavy-duty vehicle applications. We investigated a new iron/potassium-based FBC used in combination with an uncoated silicon carbide filter and report effects on emissions of polychlorinated dibenzodioxins/furans (PCDD/Fs). The PCDD/F formation potential was assessed under best and worst case conditions, as required for filter approval under the VERT protocol. TEQ-weighted PCDD/F emissions remained low when using the Fe/K catalyst (37/7.5 μg/g) with the filter and commercial, low-sulfur fuel. The addition of chlorine (10 μg/g) immediately led to an intense PCDD/F formation in the Fe/K-DPF. TEQ-based emissions increased 51-fold from engine-out levels of 95 to 4800 pg I-TEQ/L ...
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
26
References
22
Citations
NaN
KQI