Metabolic activity analyses demonstrate that Lokiarchaeon exhibits homoacetogenesis in sulfidic marine sediments

2019 
The genomes of the Asgard superphylum of Archaea hold clues pertaining to the nature of the host cell that acquired the mitochondrion at the origin of eukaryotes1–4. Representatives of the Asgard candidate phylum Candidatus Lokiarchaeota (Lokiarchaeon) have the capacity for acetogenesis and fermentation5–7, but how their metabolic activity responds to environmental conditions is poorly understood. Here, we show that in anoxic Namibian shelf sediments, Lokiarchaeon gene expression levels are higher than those of bacterial phyla and increase with depth below the seafloor. Lokiarchaeon gene expression was significantly different across a hypoxic–sulfidic redox gradient, whereby genes involved in growth, fermentation and H2-dependent carbon fixation had the highest expression under the most reducing (sulfidic) conditions. Quantitative stable isotope probing revealed that anaerobic utilization of CO2 and diatomaceous extracellular polymeric substances by Lokiarchaeon was higher than the bacterial average, consistent with higher expression of Lokiarchaeon genes, including those involved in transport and fermentation of sugars and amino acids. The quantitative stable isotope probing and gene expression data demonstrate homoacetogenic activity of Candidatus Lokiarchaeota, whereby fermentative H2 production from organic substrates is coupled with the Wood–Ljungdahl carbon fixation pathway8. The high energetic efficiency provided by homoacetogenesis8 helps to explain the elevated metabolic activity of Lokiarchaeon in this anoxic, energy-limited setting. Quantitative stable isotope probing and gene expression analyses in anoxic Namibian shelf sediments reveal that representatives of the Asgard candidate phylum Candidatus Lokiarchaeota are capable of homoacetogenesis, a metabolic strategy of high energetic efficiency that may explain how these archaea thrive in the energy-limited seafloor subsurface environment.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    57
    References
    21
    Citations
    NaN
    KQI
    []