In Situ Solvothermal Synthesis of CdS-Bi 2 MoO 6 Core-Shell Heterostructures with Enhanced Photocatalytic Performance Under Visible Light

2020 
Herein, we report the in situ solvothermal synthesis of CdS-Bi2MoO6 core-shell heterostructures (CdS-Bi2MoO6 CSHs) for the photocatalytic elimination of methyl orange (MO) under visible light. The as-synthesized CdS-Bi2MoO6 CSHs exhibited highest photocatalytic performance of 98.5%, which is approximately 10 and 4 folds higher than pristine Bi2MoO6 nanosheets (NSs) and CdS nanorods (NRs), respectively. This significantly enhanced photocatalytic performance is attributed to the core-shell heterostructeure that improves the visible-light harvesting ability, facilitates efficient separation and transfer of the photogenerated charge carriers, as well as synergistic band alignment of both CdS NRs and Bi2MoO6 NSs. The hole (h+) and superoxide radical anion (•O2−) were determined to be the predominant active species accountable for the MO dye degradation. Furthermore, the CdS-Bi2MoO6 CSHs exhibited a satisfactory recycling efficiency over five cycles (reduced by approximately 6%), owing to the protective Bi2MoO6 shell over the CdS NR core, demonstrating their applicability in wastewater purification.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []