Dual Inhibition of Tumor Energy Pathway by 2-Deoxyglucose and Metformin Is Effective against a Broad Spectrum of Preclinical Cancer Models

2011 
Tumor cell proliferation requires both growth signals and sufficient cellular bioenergetics.The AMP-activated kinase (AMPK) pathway appears dominant over the oncogenic signaling pathway suppressing cell proliferation. This study investigated the preclinical efficacy of targeting the tumor bioenergetic pathway using a glycolysis inhibitor 2-deoxy glucose (2DG) and AMPK agonists, AICAR and metformin. We evaluated the in vitro anti-tumor activity of 2DG, metformin or AICAR alone, and 2DG in combination either with metformin or AICAR. We examined in vivo efficacy using xenograft mouse models. 2DG alone was not sufficient to promote tumor cell death, reflecting the limited efficacy demonstrated in clinical trials. A combined use of 2DG and AICAR also failed to induce cell death. However, 2DG and metformin led to significant cell death associated with decrease in cellular ATP, prolonged activation of AMPK, and sustained autophagy. Gene expression analysis and functional assays revealed that the selective AMPK agonist AICAR augments mitochondrial energy transduction (OXPHOS) while metformin compromises OXPHOS. Importantly, forced energy restoration with methylpyruvate reversed the cell death induced by 2DG and metformin, suggesting a critical role of energetic deprivation in the underlying mechanism of cell death. The combination of 2DG and metformin inhibited tumor growth in mouse xenograft models. Deprivation of tumor bioenergetics by dual inhibition of energy pathways might be an effective novel therapeutic approach for a broad spectrum of human tumors.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    45
    References
    189
    Citations
    NaN
    KQI
    []