Stakeholder dynamics in residential solar energy adoption: findings from focus group discussions in Germany.

2021 
Although there is a clear indication that stages of residential decision making are characterized by their own stakeholders, activities, and outcomes, many studies on residential low-carbon technology adoption only implicitly address stage-specific dynamics. This paper explores stakeholder influences on residential photovoltaic adoption from a procedural perspective, so-called stakeholder dynamics. The major objective is the understanding of underlying mechanisms to better exploit the potential for residential photovoltaic uptake. Four focus groups have been conducted in close collaboration with the independent institute for social science research SINUS Markt- und Sozialforschung in East Germany. By applying a qualitative content analysis, major influence dynamics within three decision stages are synthesized with the help of egocentric network maps from the perspective of residential decision-makers. Results indicate that actors closest in terms of emotional and spatial proximity such as members of the social network represent the major influence on residential PV decision-making throughout the stages. Furthermore, decision-makers with a higher level of knowledge are more likely to move on to the subsequent stage. A shift from passive exposure to proactive search takes place through the process, but this shift is less pronounced among risk-averse decision-makers who continuously request proactive influences. The discussions revealed largely unexploited potential regarding the stakeholders local utilities and local governments who are perceived as independent, trustworthy and credible stakeholders. Public stakeholders must fulfill their responsibility in achieving climate goals by advising, assisting, and financing services for low-carbon technology adoption at the local level. Supporting community initiatives through political frameworks appears to be another promising step.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    92
    References
    0
    Citations
    NaN
    KQI
    []