A conservative SPH scheme using exact projection with semi-analytical boundary method for free-surface flows

2020 
Abstract This paper presents a novel SPH scheme for modelling incompressible and divergence-free flow with a free surface (IDFSPH) associated with semi-analytical wall boundary conditions. In line with the projection method, the velocity field is decoupled from the pressure field in the momentum equation. A Poisson equation, serving as the pressure solver, is obtained by which pressure field is decoupled completely from the velocity field. In particular, an exact projection scheme is deployed to fulfil the requirement of the divergence-free velocity field. The condition of incompressibility is satisfied by iteratively updating the density field till the convergence. The two-equation k–e model is employed to describe the turbulence effects in Newtonian flows. It is shown that the discretised SPH schemes have the feature of both linear and angular momentum conservations. The semi-analytical wall method implements the appropriate integrals to evaluate the boundary contributions to the mass and momentum equations. In comparison to the boundary particle methods, it can greatly enhance the feasibility and efficiency with the complex geometries. The algorithm presented within this paper is applied to several academic test cases for which either analytical results or simulations with other methods are available. The comparisons verify that this scheme is provided with convincing efficiency and extensive applicability.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    68
    References
    5
    Citations
    NaN
    KQI
    []