Synthesis, structures, and magnetic properties of end-to-end azide-bridged manganese(III) chains: elucidation of direct magnetostructural correlation.
2014
The two one-dimensional chain compounds [Mn(L1)(N3)]·H2O (1·H2O; H2L1 = 2,2′-((1E,1′E)-ethane-1,2-diylbis(azan-1-yl-1-ylidene))bis(phenylmethan-1-yl-1-ylidene)diphenol) and [Mn(L2)(N3)] (2; H2L2 = 2,2′-((1E,1′E)-2,2-dimethylpropane-1,3-diyl)bis(azan-1-yl-1-ylidene)-bis(phenylmethan-1-yl-1-ylidene)diphenol) bridged by single end-to-end azides were prepared via a self-assembly process. Each Mn(III) ion exhibits a characteristic Jahn–Teller elongation along the chain direction. For both compounds, antiferromagnetic interactions between Mn(III) spins within a chain are transmitted through the azide ligands, together with the apparent occurrence of spin canting at low temperatures. Remarkably, the coupling constants (J) for 1 and 2 exceed those reported for end-to-end azide-linked Mn(III) systems. A systematic magnetostructural relationship based on the torsion angle is established in terms of the torsion angle Mn–Nax···Nax–Mn (ax = axial) for the first time.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
44
References
25
Citations
NaN
KQI