Droplet etched GaAs quantum dots close to surfaces and metallic interfaces

2017 
GaAs quantum dots (QDs) with a thin cap layer are studied as building blocks for self-aligned hybrids with a metallic nanostructure (MN). Both constituents are filled into a nanohole template that is drilled into an AlGaAs surface by self-assembled local droplet etching during molecular beam epitaxy. In a first series of samples, the interaction of a near AlGaAs surface with a single QD at varied distance is studied using microphotoluminescence (PL) spectroscopy. With decreasing distance down to 12.5 nm, surface charges cause an increase in the exciton radiative lifetime, the formation of charged excitons, and a broadening of the exciton PL peaks. The PL peak broadening is quantitatively analyzed on the basis of an analytical model assuming temporal fluctuations of the surface charge. In a second sample series, the nanoholes are filled in addition with an Au nanostructure. The optical spectra are similar to those from QDs without a metal but with a slightly stronger PL peak broadening. For a small distanc...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    26
    References
    11
    Citations
    NaN
    KQI
    []