Estimating the Osmolarities of Tears During Evaporation Through the “Eyes” of the Corneal Nerves

2017 
Purpose: A population of corneal neurons in rats preferentially sense and monitor the hyperosmolar conditions of tears when the tears begin to evaporate during corneal dryness. The present study exploited this ability in an effort to estimate tear osmolarities by comparing the responses to corneal dryness to their responses to hyperosmolar stimuli. Methods: Extracellular recordings were performed from single neurons in the trigeminal ganglia innervating the corneas of rats. To determine the extent to which the corneal neurons' responses to drying of the cornea were induced via the activation by hyperosmolar stimuli, we assessed the responses to ocular instillation of 500 and 600 mOsm/L, and a graded series of hyperosmolar stimuli ranging from 350 to 1000 mOsm/L. Results: The magnitudes of the responses to drying of the cornea were matched almost exactly to those induced by the ocular instillation of the 600 mOsm/L stimuli but not the 500 mOsm/L solutions. The response magnitudes to a graded series of hyperosmolar solutions were nearly linear from the 350 to the 600 mOsm/L stimuli, but reached a plateau or declined slightly thereafter. Conclusions: Our results demonstrate that the tear osmolarity in rats could reach 600 to 1000 mOsm/L during ocular dryness. Furthermore, a spontaneous eye blink could be generated at a tear osmolarity of approximately 400 mOsm/L if the blink is solely determined by hyperosmolar tears, but ocular surface cooling also can become a major factor if hyperosmolar tears occurring during ocular dryness lower the threshold of activation of the neurons.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    44
    References
    8
    Citations
    NaN
    KQI
    []