Electrogenetic cellular insulin release for real-time glycemic control in type 1 diabetic mice

2020 
Sophisticated devices for remote-controlled medical interventions require an electrogenetic interface that uses digital electronic input to directly program cellular behavior. We present a cofactor-free bioelectronic interface that directly links wireless-powered electrical stimulation of human cells to either synthetic promoter–driven transgene expression or rapid secretion of constitutively expressed protein therapeutics from vesicular stores. Electrogenetic control was achieved by coupling ectopic expression of the L-type voltage-gated channel CaV1.2 and the inwardly rectifying potassium channel Kir2.1 to the desired output through endogenous calcium signaling. Focusing on type 1 diabetes, we engineered electrosensitive human β cells (Electroβ cells). Wireless electrical stimulation of Electroβ cells inside a custom-built bioelectronic device provided real-time control of vesicular insulin release; insulin levels peaked within 10 minutes. When subcutaneously implanted, this electrotriggered vesicular release system restored normoglycemia in type 1 diabetic mice.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    70
    References
    40
    Citations
    NaN
    KQI
    []