Design and Synthesis of Porphyrin-Based Optoelectronic Gates

2001 
Two porphyrin-based optoelectronic gates and several prototypical redox-switching components of gates have been synthesized for studies in molecular photonics. Linear and T-shaped molecular optoelectronic gates contain a boron-dipyrrin (BDPY) dye as the input unit, a zinc (Zn) porphyrin as the transmission unit, a free base (Fb) porphyrin as the output unit, and a magnesium (Mg) porphyrin as the redox-switching unit. The linear gate and T gate were synthesized using a molecular building block approach. In the linear gate synthesis, a BDPY−Zn porphyrin dyad was coupled with a Fb porphyrin−Mg porphyrin dimer. The synthesis of the T gate utilized a Zn porphyrin bearing four different meso substituents:  mesityl, 4-iodophenyl, 4-[2-(trimethylsilyl)ethynyl]phenyl, and 4-[2-triisopropyl)ethynyl]phenyl. Attachment of the three different groups to the Zn porphyrin was accomplished using successive Pd-mediated coupling reactions in the following sequence:  Fb porphyrin (output unit), BDPY dye (input unit), and Mg ...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    57
    References
    127
    Citations
    NaN
    KQI
    []