In vitro validation of in silico identified inhibitory interactions

2019 
Abstract Background Understanding how neuronal signals propagate in local network is an important step in understanding information processing. As a result, spike trains recorded with multi-electrode arrays (MEAs) have been widely used to study the function of neural networks. Studying the dynamics of neuronal networks requires the identification of both excitatory and inhibitory connections. The detection of excitatory relationships can robustly be inferred by characterizing the statistical relationships of neural spike trains. However, the identification of inhibitory relationships is more difficult: distinguishing endogenous low firing rates from active inhibition is not obvious. New method In this paper, we propose an in silico interventional procedure that makes predictions about the effect of stimulating or inhibiting single neurons on other neurons, and thereby gives the ability to accurately identify inhibitory effects. Comparison To experimentally test these predictions, we have developed a Neural Circuit Probe (NCP) that delivers drugs transiently and reversibly on individually identified neurons to assess their contributions to the neural circuit behavior. Results Using the NCP, putative inhibitory connections identified by the in silico procedure were validated through in vitro interventional experiments. Conclusions Together, these results demonstrate how detailed microcircuitry can be inferred from statistical models derived from neurophysiology data.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    20
    References
    0
    Citations
    NaN
    KQI
    []