Distribution of Al Element of Ti–6Al–4V Joints by Fiber Laser Welding

2019 
In the process of laser welding, the uneven distribution of solute elements caused by element burning loss and flow of molten pool affects the quality of joints. In this paper, butt welding experiments were conducted on the 3 mm thick Ti–6Al–4V specimens with different preset ratios of Al and Si powders by using 4 kW fiber laser. The distribution of Al solute element and its influence on the microstructure and mechanical properties of the final weld joint were investigated. The results showed that the self-diffusion of Al element and the flow of molten pool affects the alloy elements distribution in laser welding. And the microhardness of the welded joint with Ti–6Al–4V and 90% Al + 10% Si powders was significantly higher than that with only Ti–6Al–4V, with the difference of about 130HV. At the same time, in the joint with 90% Al and 10% Si powders, the acicular α’ size was finer, and basketweave microstructure was present as well. This research is helpful to better understand the distribution of Al solute element and its influence on the joint quality during laser welding of Ti–6Al–4V alloy, which provides a certain reference for improving the weld or surface properties of Ti–6Al–4V alloy during laser processing.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    24
    References
    2
    Citations
    NaN
    KQI
    []