Stable microstructure in a nanocrystalline copper–tantalum alloy during shock loading

2020 
The microstructures of materials typically undergo significant changes during shock loading, causing failure when higher shock pressures are reached. However, preservation of microstructural and mechanical integrity during shock loading are essential in situations such as space travel, nuclear energy, protection systems, extreme geological events, and transportation. Here, we report ex situ shock behavior of a chemically optimized and microstructurally stable, bulk nanocrystalline copper–tantalum alloy that shows a relatively unchanged microstructure or properties when shock compressed up to 15 GPa. The absence of shock-hardening indicates that the grains and grain boundaries that make up the stabilized nanocrystalline microstructure act as stable sinks, thereby annihilating deformation-induced defects during shock loading. This study helps to advance the possibility of developing advanced structural materials for extreme applications where shock loading occurs. Shock loading of materials alters the microstructure and considerably degrades mechanical performance. Here, shock loading of a nanocrystalline Cu–Ta alloy is found to induce minor changes to microstructure and mechanical performance, attributed to the annihilation of defects during deformation.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    60
    References
    3
    Citations
    NaN
    KQI
    []