Singlet fission in chiral carbon nanotubes: Density functional theory based computation

2017 
Singlet fission (SF) process, where a singlet exciton decays into a pair of spin one exciton states which are in the total spin singlet state, is one of the possible channels for multiple exciton generation (MEG). In chiral single-wall carbon nanotubes (SWCNTs), efficient SF is present within the solar spectrum energy range which is shown by the many-body perturbation theory calculations based on the density functional theory simulations. We calculate SF exciton-to-biexciton decay rates R1→2 and biexciton-to-exciton rates R2→1 in the (6,2), (6,5), (10,5) SWCNTs, and in the (6,2) SWCNT functionalized with Cl atoms. Within the solar energy range, we predict R1→2∼1014–1015 s−1, while biexciton-to-exciton recombination is weak with R2→1∕R1→2≤10−2. SF MEG strength in pristine SWCNTs varies strongly with the excitation energy, which is due to highly non-uniform density of states at low energy. However, our results for the (6,2) SWCNT with chlorine atoms adsorbed to the surface suggest that MEG in the chiral SWC...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    52
    References
    11
    Citations
    NaN
    KQI
    []