A Step-Down Test Procedure for Wavelet Shrinkage Using Bootstrapping

2020 
Wavelet thresholding (or shrinkage) attempts to remove the noises existing in the signals while preserving inherent pattern characteristics in the reconstruction of true signals. For data-denoising purpose, we present a new wavelet thresholding procedure which employs the step-down testing idea of identifying active contrasts in unreplicated fractional factorial experiments. The proposed method employs bootstrapping methods to a step-down test for thresholding wavelet coefficients. By introducing the concept of a false discovery error rate in testing wavelet coefficients, we shrink the wavelet coefficients with $p$ -values higher than the error rate. The error rate controls the expected proportion of wrongly accepted coefficients among chosen wavelet coefficients. Bootstrap samples are used to approximate the $p$ -value for computational efficiency. We also present some guidelines for selecting the values of hyper-parameters which affect the performance in the step-down thresholding procedure. Based on some common testing signals and an air-conditioner sounds example, the comparison of our proposed procedure with other thresholding methods in the literature is performed. The analytical results show that the proposed procedure has a potential in data-denoising and data-reduction in a variety of signal reconstruction applications.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    20
    References
    0
    Citations
    NaN
    KQI
    []