Novel cuminaldehyde self‐emulsified nanoemulsion for enhanced antihepatotoxicity in carbon tetrachloride‐treated mice

2019 
OBJECTIVES: Cuminaldehyde self-emulsified nanoemulsion (CuA-SEN) was prepared and optimised to improve its oral bioavailability and antihepatotoxicity. METHODS: Cuminaldehyde self-emulsified nanoemulsion was developed through the self-nanoemulsification method using Box-Behnken Design (BBD) tool while appropriate physicochemical indices were evaluated. The optimised CuA-SEN was characterised via droplet size (DS), morphology, polydispersity index (PDI), zeta potential (ZP), entrapment efficiency, in-vitro release, and pharmacokinetic studies while its antihepatotoxicity was evaluated. KEY FINDINGS: Cuminaldehyde self-emulsified nanoemulsion with acceptable characteristics (mean DS-48.83 ± 1.06 nm; PDI-0.232 ± 0.140; ZP-29.92 ± 1.66 mV; EE-91.51 ± 0.44%; and drug-loading capacity (DL)-9.77 ± 0.75%) was formulated. In-vitro drug release of CuA-SEN significantly increased with an oral relative bioavailability of 171.02%. Oral administration of CuA-SEN to CCl4 -induced hepatotoxicity mice markedly increased the levels of superoxide dismutase, glutathione and catalase in serum. Also, CuA-SEN reduced the levels of tumour necrosis factor-alpha and interleukin-6 in both serum and liver tissues while aspartate aminotransferase, alanine aminotransferase and malonaldehyde levels were significantly decreased. CONCLUSIONS: These findings showed that the improved bioavailability of cuminaldehyde via SEN provided an effective approach for enhancing antioxidation, anti-inflammation and antihepatotoxicity of the drug.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    91
    References
    9
    Citations
    NaN
    KQI
    []