Demonstrating the contextuality of quantum mechanics with observables in Hilbert spaces of arbitrary dimensions

2015 
The contextuality of quantum mechanics can be shown by the violation of inequalities based on measurements of well chosen observables. An important property of such observables is that their expectation value can be expressed in terms of probabilities of obtaining two exclusive outcomes. In order to satisfy this, inequalities have been constructed using either observables with a dichotomic spectrum or using periodic functions obtained from displacement operators in phase space. Here we unify both strategies by introducing general conditions to demonstrate the contextuality of quantum mechanics from measurements of observables of arbitrary dimensions. Among the consequences of our results is the impossibility of having a maximal violation of contextuality in the Peres-Mermin scenario with discrete observables of odd dimensions. In addition, we show how to construct a large class of observables with a continuous spectrum enabling the realization of contextuality tests both in the gaussian and non-gaussian regimes.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []