Magnetic field induced asymmetric splitting of the output signal

2021 
In this paper we have investigated the dynamics of a damped harmonic oscillator in the presence of an electromagnetic field. The transients for the two dimensional harmonic oscillator imply about the modulation of the frequency of the oscillator by the velocity dependent non conservative force from an applied magnetic field. Except a special condition, the motion is in general quasi periodic nature even in the absence of damping. Another interesting finding is that the magnetic field may induce an asymmetric splitting of the spectrum of the output signal with two peaks in the case of a driven damped two dimensional harmonic oscillator. One more additional peak may appear for the three dimensional case. In some cases the spectrum may have similarity with the Normal Zeeman Effect. At the same time one may observe to appear the anti resonance phenomenon even for the driven damped cyclotron motion where the system with the purely non conservative force fields is driven by an electric field. Finally, our calculation exhibits how the magnetic field can modulate the phase difference (between input and output signals) and the efficiency like quantity of the energy storing process. Thus the present study might be applicable in the areas related to the refractive index, the barrier crossing dynamics and autonomous stochastic resonance, respectively.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    2
    References
    0
    Citations
    NaN
    KQI
    []