Underwater Curvature-Driven Transport between Oil Droplets on Patterned Substrates

2018 
Roughness contrast patterns were generated on copper surfaces by a simple one-step site-selective oxidation process using a felt-tipped ink pen masking method. The patterned surface exhibited strong underwater oil wettability contrast which allows oil droplet confinement. Oil droplets placed on two patterned smooth dots (reservoirs) connected by a patterned smooth channel will spontaneously exchange liquid as a result of Laplace pressure differences until their shapes have reached equilibrium. In our experiments, residual solubility of the oil in water was overcome by using saturated oil-in-water solutions as the aqueous medium. In the saturated solution, the dependence of pattern geometry and oil viscosity on transported volume and the flow rate in the underwater oil transport process was investigated for dichloromethane and hexadecane. Experimental results were in good agreement with a simple model for Laplace pressure-driven flow. Depending on droplet curvatures, oil can be transported from large to sm...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    61
    References
    20
    Citations
    NaN
    KQI
    []