A Complete Pedigree-Based Graph Workflow for Rare Candidate Variant Analysis

2021 
Methods that use a linear genome reference for genome sequencing data analysis are reference biased. In the field of clinical genetics for rare diseases, a resulting reduction in genotyping accuracy in some regions has likely prevented the resolution of some cases. Pangenome graphs embed population variation into a reference structure. While pangenome graphs have helped to reduce reference mapping bias, further performance improvements are possible. We introduce VG-Pedigree, a pedigree-aware workflow based on the pangenome-mapping tool of Giraffe (Siren et al. 2021) and the variant-calling tool DeepTrio (Kolesnikov et al. 2021) using a specially-trained model for Giraffe-based alignments. We demonstrate mapping and variant calling improvements in both single-nucleotide variants (SNVs) and insertion and deletion (INDEL) variants over those produced by alignments created using BWA MEM to a linear-reference and Giraffe mapping to a pangenome graph containing data from the 1000 Genomes Project. We have also adapted and upgraded the deleterious-variant (DV) detecting methods and programs of Gu et al. into a streamlined workflow (Gu et al. 2019). We used these workflows in combination to detect small lists of candidate DVs among 15 family quartets and quintets of the Undiagnosed Diseases Program (UDP). All candidate DVs that were previously diagnosed using the mendelian models covered by the previously published Gu et al. methods were recapitulated by these workflows. The results of these experiments indicate a slightly greater absolute count of DVs are detected in the proband population than in their matched unaffected siblings.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    48
    References
    0
    Citations
    NaN
    KQI
    []