Photonic integrated circuits for multi-color laser engines

2017 
Photonic Integrated Circuits (PIC) will change the fundamental paradigms for the design of multi-color laser engines for life sciences. Exemplified with flow cytometry (FCM), integrated optical technology for visible wavelengths will be shown to open a new spectrum of possibilities to control flow cell illumination patterns, such as the number of output spots, the spot size, and even complex patterns generated by interferometry. Integration of additional optical functions such as variable optical attenuation, wavelength division multiplexing or fast shutters adds value to the PIC. TOPTICA is demonstrating integration of PICs in present Multi-color Laser Engine (MLE) architectures. Multiple wavelengths (405nm, 488nm, 561nm, 640nm) are coupled free space into the chip, leveraging its beam steering COOLAC (Constant Optical Output Level Auto Calibration) technology for automatic realignment, thus overcoming the need of fiber input delivery. Once in the waveguide, the light can be redirected and shaped to a desired output pattern and pitch, reducing the need of discrete optical components. In this work, we will discuss the implementation of various building blocks in PIC technology for MLEs and analyze the advantages over current macroscopic counterparts.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    15
    References
    7
    Citations
    NaN
    KQI
    []