Decoupling free-carriers contributions from oxygen-vacancy and cation-substitution in extrinsic conducting oxides.

2013 
The intrinsic oxygen-vacancies and the extrinsic dopants are two major fundamental free-carrier sources for the extrinsic conducting oxides, such as Sn-doped In2O3. Yet, the individual contributions of the above two free-carrier sources to the total carrier concentrations have never been unraveled. A carrier-concentration separation model is derived in this work, which can define the individual contributions to the total carrier concentration from the intrinsic oxygen-vacancies and the extrinsic dopants, separately. The individual contributions obtained from the present carrier-concentration separation model are verified by the two-state trapping model, photoluminescence, and positron annihilation lifetime (PAL) spectroscopy. In addition, the oxygen-vacancy formation energy of the Sn:In2O3 thin film is determined to be 0.25 eV by PAL spectroscopy.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    29
    References
    4
    Citations
    NaN
    KQI
    []