ZnSn Nanocatalyst: Ultra-high Formate Selectivity from CO2 Electrochemical Reduction and the Structure Evolution Effect

2021 
Abstract The introduction of tin (Sn) into Zn-based catalyst can change its intrinsic properties of the electrochemically reduction of CO2 to CO, obtaining a high formate yield. The electron transfer from Zn to Sn lowers down the d-band center of Sn, leading to a more reliable surface adsorption of the *OCHO intermediate and resulting high formate selectivity. The obtained ZnSn catalyst enables formate formation with a drastically boosted Faradaic efficiency (FE) up to 94%, which is 2.04 and 1.34 times of pure Zn and Sn foils, respectively, indicating a synergistic effect between Zn and Sn. During the electrochemical CO2 reduction reaction (eCO2RR) process, the morphology of the ZnSn catalyst evolved from nanoparticles to nanosheets, nanoneedles and collapsed structures, corresponding to the activation, stabilization and decay stages, respectively. This study provides a facile and controllable approach for the construction of novel bimetallic catalyst favoring formate selectivity based on the synergistic effect.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    58
    References
    0
    Citations
    NaN
    KQI
    []