Experimental determination of pCo perturbation factors for plane-parallel chambers

2007 
For plane-parallel chambers used in electron dosimetry, modern dosimetry protocols recommend a cross-calibration against a calibrated cylindrical chamber. The rationale for this is the unacceptably large (up to 3?4%) chamber-to-chamber variations of the perturbation factors (pwall)Co, which have been reported for plane-parallel chambers of a given type. In some recent publications, it was shown that this is no longer the case for modern plane-parallel chambers. The aims of the present study are to obtain reliable information about the variation of the perturbation factors for modern types of plane-parallel chambers, and?if this variation is found to be acceptably small?to determine type-specific mean values for these perturbation factors which can be used for absorbed dose measurements in electron beams using plane-parallel chambers. In an extensive multi-center study, the individual perturbation factors pCo (which are usually assumed to be equal to (pwall)Co) for a total of 35 plane-parallel chambers of the Roos type, 15 chambers of the Markus type and 12 chambers of the Advanced Markus type were determined. From a total of 188 cross-calibration measurements, variations of the pCo values for different chambers of the same type of at most 1.0%, 0.9% and 0.6% were found for the chambers of the Roos, Markus and Advanced Markus types, respectively. The mean pCo values obtained from all measurements are and ; the relative experimental standard deviation of the individual pCo values is less than 0.24% for all chamber types; the relative standard uncertainty of the mean pCo values is 1.1%.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    26
    References
    8
    Citations
    NaN
    KQI
    []