Fully developed Darcy-Forchheimer mixed convective flow over a curved surface with activation energy and entropy generation

2020 
Abstract Background: Mixed convection (forced+natural convection) is frequently observed in exceptionally high output devices where the forced convection isn’t sufficient to dissipate all of the heat essential. At this point, consolidating natural convection with forced convection will frequently convey the ideal outcomes. Nuclear reactor technology and a few features of electronic cooling are the examples of these processes. Mixed convection problems are categorized by Richardson number (Ri), which is the ratio of Grashof number (for natural convection) and Reynolds number (for forced convection). For buoyancy or mixed convection the relative effect can be addressed by Richardson number. Typically, the natural convection is negligible when Richardson number is less than 0.1 (Ri   10) and neither is negligible when (0.1  Method: Curvilinear transformations are utilized to change the nonlinear PDE’s into ordinary ones. Computational outcomes are obtained via NDSolve MATHEMATICA. The results are computed and discussed graphically. Results: Velocity decays for Forchheimer number. Entropy generation enhances for diffusion parameter and chemical reaction parameter. Concentration profile reduces chemical reaction parameter and enhances for activation parameter.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    24
    References
    144
    Citations
    NaN
    KQI
    []