Robust output feedback control of 2D discrete systems with actuator saturation and time-varying delay:

2017 
An observer-based dynamic output feedback H∞ controller is proposed for a class of two-dimensional (2D) uncertain discrete systems described by the Roesser model with actuator saturation, time-varying state delay and external disturbances. First, a delay-dependent Lyapunov stability condition is derived in linear matrix inequality (LMI) form which uses the reciprocal convex approach and H∞ disturbance attenuation performance is also analysed. Secondly, a convex hull is adopted to represent the saturation nonlinearity. The H∞ control synthesis for uncertain 2D discrete systems is described by a Roesser model subjected to actuator saturation and external disturbances using an observer-based dynamic output feedback approach. Some practical examples are provided to highlight the usefulness of the presented results.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    114
    References
    6
    Citations
    NaN
    KQI
    []