Axonal plasticity associated with perceptual learning in adult macaque primary visual cortex

2018 
Perceptual learning is associated with changes in the functional properties of neurons even in primary sensory areas. In macaque monkeys trained to perform a contour detection task, we have observed changes in contour-related facilitation of neuronal responses in primary visual cortex that track their improvement in performance on a contour detection task. We have previously explored the anatomical substrate of experience-dependent changes in the visual cortex based on a retinal lesion model, where we find sprouting and pruning of the axon collaterals in the cortical lesion projection zone. Here, we attempted to determine whether similar changes occur under normal visual experience, such as that associated with perceptual learning. We labeled the long-range horizontal connections in visual cortex by virally mediated transfer of genes expressing fluorescent probes, which enabled us to do longitudinal two-photon imaging of axonal arbors over the period during which animals improve in contour detection performance. We found that there are substantial changes in the axonal arbors of neurons in cortical regions representing the trained part of the visual field, with sprouting of new axon collaterals and pruning of preexisting axon collaterals. Our findings indicate that changes in the structure of axonal arbors are part of the circuit-level mechanism of perceptual learning, and further support the idea that the learned information is encoded at least in part in primary visual cortex.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    49
    References
    17
    Citations
    NaN
    KQI
    []