Activation of GPR43 suppresses TNF-α-induced inflammatory response in human fibroblast-like synoviocytes

2020 
Abstract Although rheumatoid arthritis (RA) has long posed a major threat to global health, the mechanisms driving the development and progression of RA remain incompletely understood. In the present study, we investigated the effects of G protein-coupled receptor 43 (GPR43/FFAR2) in various aspects of the pathogenesis of RA. To our knowledge, this is the first study to demonstrate that GPR43 is expressed on human fibroblast-like synoviocytes (FLS). Furthermore, we show that GPR43 is upregulated in FLS exposed to tumor necrosis factor-α (TNF-α). Importantly, our findings demonstrate that activation of GPR43 using its specific agonist significantly suppressed expression of the following key factors of RA: cytokines, such as interleukin-6 (IL-6), IL-8, high mobility group protein 1 (HMG-1); chemokines, such as monocyte chemoattractant protein 1 (MCP-1), intercellular adhesion molecule 1 (ICAM-1), and vascular cellular adhesion molecule 1 (VCAM-1); markers of oxidative stress, such as production of reactive oxygen species (ROS) and 4-hydroxynoneal (4-HNE); degradative enzymes, such as matrix metalloproteinase-3 (MMP-3) and MMP-13; and activation of the nuclear factor-κB (NF-κB) inflammatory signaling pathway. These results suggest a promising potential role for GPR43 as a specific target in the treatment and prevention of RA.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    27
    References
    4
    Citations
    NaN
    KQI
    []