On the mean value of generalized Dirichlet $${\varvec{L}}$$-functions with weight of the character sums
2021
Let p be a prime, $$\chi $$
denote a Dirichlet character modulo p. For any integer x (
$$1\le x\le p-1$$
), $${\bar{x}}$$
denotes the integer inverse of x such that $$x{\bar{x}}\equiv 1(\bmod \, p)$$
, we study the following mean value of a kind of character sums with generalized Dirichlet L-functions $$\begin{aligned} {\mathop {\mathop {\sum }\limits _{\chi (-1)=1}}\limits _{\chi \ne \chi _0}} \left| \sum _{x=1}^{p-1}\chi (x+{\bar{x}})\right| ^2|L(1,\chi ,a)|^2, \end{aligned}$$
where $$\chi _0$$
is the principal character modulo p, and $$L(1,\chi ,a)$$
is the generalized Dirichlet L-functions. In this paper, we will use the analytic method and get a sharp asymptotic formula.
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
14
References
0
Citations
NaN
KQI