Cymbopogon citratus (DC.) Stapf, citral and geraniol exhibit anticonvulsant and neuroprotective effects in pentylenetetrazole-induced seizures in zebrafish

2021 
Abstract Ethnopharmacological relevance Cymbopogon citratus (DC.) Stapf (C. citratus) is consumed as an infusion in folk medicine due to its pharmacological properties and action in the central nervous system. Epilepsy is a neurological disorder that affects millions of people. Since the currently available antiepileptic drugs often cause undesirable side effects, new alternative therapeutic strategies based on medicinal plants have been proposed. Aim of the study: This study aimed to investigate the anticonvulsant and neuroprotective effects of C. citratus essential oil (EO) and hydroalcoholic extract (E1) from its leaves, as well as of its related compounds citral (CIT) and geraniol (GER) against the effects of pentylenetetrazole (PTZ) induced seizures in zebrafish (Danio rerio). Materials and Methods To evaluate the anticonvulsant properties of the samples, adult animals were pre-treated (by immersion) and subsequently exposed to PTZ solution. The involvement of GABAA receptors in the antiepileptic effects was investigated by the coadministration of flumazenil (FMZ), a known GABAA receptor antagonist. Oxidative stress markers malondialdehyde (MDA), glutathione (GSH), catalase (CAT) and nitric oxide (NO) were assessed in zebrafish brain homogenates after PTZ exposure. Results All samples increased the latency time for the first seizure, which was reduced when animals were pretreated with FMZ, suggesting the involvement of GABAA receptors in the observed properties. The association between CIT and GER at the lowest concentration studied showed a synergistic effect on the anticonvulsant activity. Decreases in MDA and NO levels and increases in GSH and CAT levels in the brain of treated animals suggested the neuroprotective effect of the compounds investigated. Conclusions Our results proved that C. citratus EO, E1, CIT and GER have anticonvulsant effects in zebrafish and could be used as a promising adjuvant therapeutic strategy for epilepsy treatment. Furthermore, zebrafish demonstrated to be an alternative animal model of epilepsy to evaluate the anticonvulsant and neuroprotective effects of C. citratus.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    46
    References
    2
    Citations
    NaN
    KQI
    []