Reduced neutralization of SARS-CoV-2 variants by convalescent plasma and hyperimmune intravenous immunoglobulins for treatment of COVID-19

2021 
Hyperimmune immunoglobulin (hCoV-2IG) preparations generated from SARS-CoV-2 convalescent plasma (CP) are under evaluation in several clinical trials of hospitalized COVID-19 patients. Here we explored the antibody epitope repertoire, antibody binding and virus neutralizing capacity of six hCoV-2IG batches as well as nine convalescent plasma (CP) lots against SARS-CoV-2 and emerging variants of concern (VOC). The Gene-Fragment Phage display library spanning the SARS-CoV-2 spike demonstrated broad recognition of multiple antigenic sites spanning the entire spike including NTD, RBD, S1/S2 cleavage site, S2-fusion peptide and S2-heptad repeat regions. Antibody binding to the immunodominant epitopes was higher for hCoV-2IG than CP, with predominant binding to the fusion peptide. In the pseudovirus neutralization assay (PsVNA) and in the wild-type SARS-CoV-2 PRNT assay, hCoV-2IG lots showed higher titers against the WA-1 strain compared with CP. Neutralization of SARS-CoV-2 VOCs from around the globe were reduced to different levels by hCoV-2IG lots. The most significant loss of neutralizing activity was seen against the B.1.351 (9-fold) followed by P.1 (3.5-fold), with minimal loss of activity against the B.1.17 and B.1.429 ([≤]2-fold). Again, the CP showed more pronounced loss of cross-neutralization against the VOCs compared with hCoV-2IG. Significant reduction of hCoV-2IG binding was observed to the RBD-E484K followed by RBD-N501Y and minimal loss of binding to RBD-K417N compared with unmutated RBD. This study suggests that post-exposure treatment with hCoV-2IG is preferable to CP. In countries with co-circulating SARS-CoV-2 variants, identifying the infecting virus strain could inform optimal treatments, but would likely require administration of higher volumes or repeated infusions of hCOV-2IG or CP, in patients infected with the emerging SARS-CoV-2 variants.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    29
    References
    4
    Citations
    NaN
    KQI
    []