TYROSINE PHOSPHORYLATION OF 100-115 KDA PROTEINS BY PHOSPHATIDIC ACID GENERATED VIA PHOSPHOLIPASE D ACTIVATION IN HL60 GRANULOCYTES

1997 
Abstract In HL60 granulocytes, 4 β -phorbol 12-myristate 13-acetate (PMA) induced tyrosine phosphorylation of several proteins with molecular weight of 100–115 kDa and 45 kDa. Furthermore, PMA-mediated phosphatidic acid (PA) production via phospholipase D (PLD) activation. In the presence of either butanol or ethanol, PMA-induced PA production was markedly reduced and instead a metabolically stable phosphatidylbutanol (PBut) or phosphatidylethanol (PEt) was produced by transphosphatidylation by PLD. Under the same incubation condition, these primary alcohols inhibited PMA-induced tyrosine phosphorylation of the 100–115 kDa proteins. Propranolol, which is often used as a selective inhibitor of PA phosphohydrolase (PAP) involving diacylglycerol (DG) formation from PA, did not affect tyrosine phosphorylation of the 100–115 kDa proteins. Moreover, incubation of HL60 granulocytes with Streptomyces chromofuscus PLD caused both PA production and tyrosine phosphorylation of the above proteins. Exogenous PA treatment also induced tyrosine phosphorylation of the same proteins. Thus, the results presented here suggest that PA produced via PLD activation is involved in tyrosine phosphorylation of the 100–115 kDa proteins in HL60 granulocytes.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    28
    References
    21
    Citations
    NaN
    KQI
    []