Structure-Activity and Stability Relationships for Cobalt Polypyridyl based Hydrogen Evolving Catalysts in Water

2017 
A series of eight new and three known cobalt polypyridyl-based hydrogen-evolving catalysts (HECs) with distinct electronic and structural differences are benchmarked in photocatalytic runs in water. Methylene-bridged bis-bipyridyl is the preferred scaffold, both in terms of stability and rate. For a cobalt complex of the tetradentate methanol-bridged bispyridyl–bipyridyl complex [CoIIBr(tpy)]Br, a detailed mechanistic picture is obtained by combining electrochemistry, spectroscopy, and photocatalysis. In the acidic branch, a proton-coupled electron transfer, assigned to formation of CoIII−H, is found upon reduction of CoII, in line with a pKa(CoIII−H) of approximately 7.25. Subsequent reduction (−0.94 V vs. NHE) and protonation close the catalytic cycle. Methoxy substitution on the bipyridyl scaffold results in the expected cathodic shift of the reduction, but fails to change the pKa(CoIII−H). An analysis of the outcome of the benchmarking in view of this postulated mechanism is given along with an outlook for design criteria for new generations of catalysts.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    111
    References
    30
    Citations
    NaN
    KQI
    []