Virtual reality-based assessment of cognitive-locomotor interference in healthy young adults.

2021 
BACKGROUND A recent literature review emphasized the importance of assessing dual-task (DT) abilities with tasks that are representative of community ambulation. Assessing DT ability in real-life activities using standardized protocols remains difficult. Virtual reality (VR) may represent an interesting alternative enabling the exposure to different scenarios simulating community walking. To better understand dual-task abilities in everyday life activities, the aims of this study were (1) to assess locomotor and cognitive dual-task cost (DTC) during representative daily living activities, using VR, in healthy adults; and 2) to explore the influence of the nature and complexity of locomotor and cognitive tasks on DTC. METHODS Fifteen healthy young adults (24.9 ± 2.7 years old, 8 women) were recruited to walk in a virtual 100 m shopping mall corridor, while remembering a 5-item list (DT condition), using an omnidirectional platform and a VR headset. Two levels of difficulty were proposed for the locomotor task (with vs. without virtual agent avoidance) and for the cognitive task (with vs. without items modification). These tasks were also performed in single task (ST) condition. Locomotor and cognitive DTC were measured by comparing performances in ST and DT conditions. Locomotor performance was characterized using walking speed, walking fluidity, and minimal distance between the participant and the virtual agent during avoidance. Cognitive performance was assessed with the number of items correctly recalled. Presence of DTC were determined with one-sample Wilcoxon signed-rank tests. To explore the influence of the tasks' complexity and nature on DTC, a nonparametric two-way repeated measure ANOVA was performed. RESULTS No locomotor interference was measured for any of the outcomes. A cognitive DTC of 6.67% was measured (p = .017) while participants performed simultaneously both complex locomotor and cognitive tasks. A significant interaction between locomotor task complexity and cognitive task nature (p = .002) was identified on cognitive DTC. CONCLUSIONS In challenging locomotor and cognitive conditions, healthy young adults present DTC in cognitive accuracy, which was influenced by the locomotor task complexity task and the cognitive task nature. A similar VR-based protocol might be used to investigate DT abilities in older adults and individuals with a stroke.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    60
    References
    2
    Citations
    NaN
    KQI
    []